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A number of problems associated with the nonuniqueness of numerical solutions of the Navier−Stokes
equations used for simulating processes of a hypersonic real gas flow past blunt bodies are consid-
ered. The processes of evolution of a stationary pattern of flow perturbed by a single pulse at an
initial time instant are considered at different values of the governing parameters of the problem. The
instability of the bifurcation type resulting in transition of the nonstationary process from one branch
of solution to another and the attainment of a stationary regime is investigated.

The development of computer technology and the associated advances in computer simulation in
problems of gas dynamics in the field of numerical investigation of complex flows, the possibility of per-
forming multiparametric cycles of calculation with a detailed fine-step variation of governing parameters, in
particular, for the problems of external flow past differently shaped bodies, such as the Mach and Reynolds
numbers of a free stream, the temperature factor, the efficient specific heat ratio, etc., and the practice of
storage in databases and subsequent joint analysis of the results of the cycles of these calculations make it
possible to study, on a qualitatively new level, the problem concerning the degree of the reliability of the
numerical solutions obtained as a problem of the adequacy of a mathematical model and of the algorithms
and codes implementing it to the occurring physical process. One of the important and generally little studied
aspects of this problem is the nonuniqueness of numerical solutions of nonlinear systems of the differential
equations of gas dynamics. This, in turn, involves the problems of the stability of flows with shock waves
and of the shock waves themselves in gases, especially with account for their real properties, against different
kinds of perturbations. Generally speaking, investigation of the stability of shock waves has been the concern
of a large number of analytical computational, and experimental works, a review of which (even a brief one)
is difficult. In the present work, we consider these problems in a somewhat different vein and from somewhat
different positions that differ rather substantially from the traditional ones.

Formulation of the Problem. The present work is an extension of previous investigations [1, 2]. We
carried out a large series of computational experiments in the following formulation. We investigated super-
sonic viscous heat-conducting gas flow past the spherically blunt nose of a cylinder or cone. In the region
bounded by an isothermal or thermally insulated surface of the body, bow compression shock (the position
and configuration of which were sought in the process of solution), symmetry axis, and by the outlet bound-
ary, we performed numerical integration of a nonstationary system of Navier−Stokes equations, written in a
traditional dimensionless form with parameters M∞, Re∞, Pr, and γ that determine the solution, by the method
[3, 4], of the first and second order of accuracy over time and space, respectively. The system was closed by
the quasiequilibrium equation of state written in the form of the equation of state of a perfect gas with a
variable value of γ which was determined by the method of "efficient specific heat ratio" [5] that approxi-
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mately models excitation of internal degrees of freedom in the gas. As the basic scales in nondimensionaliza-
tion, we used the radius of bluntness Rb, the density ρ∞, and the free stream velocity U∞, and the scales of
the remaining quantities were obtained from them by means of respective combinations. This uniquely gov-
erns the conversion, when required, of the dimensionless quantities, given below, into dimensional ones.

From the side of the external free stream, the stationary pattern of flow (typical patterns are shown
in Fig. 1) experiences the incidence of peak-shaped energy release pulses of intensity I and periodicity T with
a steep leading front and a large attenuation decrement E(x, t) = Iδ(ωt − kx), where δ is the unit pulse func-
tion (the Dirac wave delta-function)

δ (z) = 




1 ;   z = % 0, 1, 2, ...
0 ;   z ≠ � 0, 1, 2, ... ,

and the frequency ω, wave number k, and wavelength L are connected with the parameters T and U∞ by the
relations ω = 2π/T, k = 2π/L, and L = U∞T. The instant of incidence of the first pulse on the stationary bow
shock is taken to be the start of the reading of time. In [2], a nonstationary process of the reorganization of
the flow pattern was considered in the time interval 0 ≤ t ≤ T between the incidences of the first and second
pulses on the bow shock. In the present work, we study the process of evolution of the solution perturbed by
a single pulse (T >> T∗ , where T∗  is the characteristic time of the process) at the initial instant of the flow
field, i.e., mathematically, induced by the change in the initial data of a continuous differential problem or,
computationally, by the replacement of the starting conditions for the algorithm of the solution of a discrete
problem. Generally speaking, the problems of the equivalence between the continuous differential and discrete
finite-difference problems in the presence, in the solution domains, of strong and weak discontinuities have
been insufficiently studied, especially in the possible presence of transition regimes in the vicinity of the criti-
cal values of governing parameters − the problem to be discussed below when the results of numerical simu-
lation are analyzed. Our main focus of attention is the study of the evolution of flow in the range of
parameters between the boundaries of the regimes of weak and strong instabilities [1].

Some Results of Calculations. The model of the efficient specific heat ratio [5] was used to perform
a series of calculations in wide ranges of the governing parameters 3 ≤ M∞ ≤ 50, 1.01 ≤ γ ≤ 5/3 with a fairly
short step ∆M∞, ∆γ and to create a specialized division of a database [4] as a reference one for further inves-
tigations. Below, as an illustration, we give the results of calculation of thermally insulated bodies immersed
in a gas flow with the parameters M∞ = 10, Re∞ = 0.25⋅105, and Pr = 0.72.

Figure 1 presents stationary flows near the nose part of the body that were induced at γ = 1.4 (a),
1.10 (b), 1.07 (c), and 1.037 (d). The figure shows the density isolines undergoing equidistant change from
ρmax near the stagnation point to ρmin downstream. One can see a substantial rearrangement of flow with
decrease in γ, starting roughly at γ = 1.10. First, the general configuration of the flow undergoes a change:

Fig. 1. Isolines of the values of density in a stationary flow pattern.
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the isochors "converge" both in the direction from the body to the bow compression shock and upstream. A
narrow layer with high density and temperature gradients is formed near the bow shock. Second, a large
decrease is observed in the thickness of the shock layer, i.e., in the region of the perturbed flow between the
bow shock and the body surface: the dependence of the departure of the shock from the body at the line of
stagnation ds(γ)/Rb is shown in Fig. 2. We call attention to the practically exact linear dependence of ds(γ) in
this range of γ. This is a very interesting fact, just as arc any linear dependences obtained in the solution of
substantially nonlinear problems. We note that Fig. 2 represents an integrated analysis of a large number of
calculations with parametric sorting of γ (with a small step ∆γ from calculation to calculation), and each point
of this graph is a stationary solution of a separate nonstationary problem. Third, the values of density increase
enormously in the shock layer and, moreover, at small γ’s both transverse (from a shock to the body) and
longitudinal (downstream) gradients of the values are very large: Fig. 3 shows the distributions of the density
in the boundary layer along the body surface ρb(x)/ρ∞ for different values of γ. The coordinate x is reckoned
from the nose of the body (stagnation points) along its axis and is related to the radius of bluntness.

This structure of flow favors the development of the perturbations generated in the flow and the ap-
pearance of instabilities in both the region of the bow shock, up to its destruction, and the boundary layer.

To analyze the stability of stationary structures of flow (see Fig. 1) to the perturbations incident from
the side of the free stream, similarly to a physical experiment, a "system of probes" was used that were lo-
cated at points 1−4 (denoted by crosses in Fig. 1a): along the stagnation line on the surface of the body at
the stagnation point 1 and at the front of the bow shock 2 and also along the ray perpendicular to the axis
of the problem and emanating from the center of the spherical bluntness, correspondingly on the surface of
the body 3 and at the front of the bow compression shock 4 at which the values of the gas-dynamical pa-
rameters f(t) were steadily tracked at large time intervals (the current values of the density ρ(t)/ρ∞ will be
given in what follows).

Analysis of the results of many computational experiments carried out in a wide range of governing
parameters makes it possible to distinguish four basic regimes of the susceptibility of the flow pattern to
perturbations: stable, neutrally stable, neutrally stable with transition, and unstable. These regimes can un-
dergo some gradation in a two-parametric region (M∞, γ): at a certain fixed value of M∞, the stable regime
is realized in the region where γ > γ1, the neutrally stable regime in the region of γ2 < γ < γ1; the neutrally
stable regime with transition is realized in the very narrow range γ3 < γ < γ2, and the unstable regime is
realized when γ < γ3. The boundaries of the regimes are rather smeared, i.e., one cannot point to strictly
definite values of γ1, γ2, and γ3, since the regimes smoothly change one another. We point to the fact that for
M∞ < M∗ , where M∗  is a certain critical value of M∞ (see [1]), only stable regimes exist. It should be noted
that the developing regimes and correspondingly their boundaries depend on the level of perturbations, which

Fig. 2. Dependence of the distance of departure of the front shock from
the body at the stagnation line on the specific heat ratio.

Fig. 3. Distribution of density along the body surface. Curves 1, 2, 3,
and 4 correspond to the values γ = 1.4, 1.1, 1.07, and 1.037.
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were selected to be small but finite (D10%) in the present investigation. The perturbation pulse of very large
intensity is naturally capable of destroying completely the stationary pattern of flow past a body even in the
region of stability.

Typical patterns of the regimes are illustrated in Fig. 4, which presents the function ρ(n)/ρ∞ (M∞ =
10, Re∞ = 0.25⋅105, Pr = 0.72, thermal insulation, t = nτ, n is the number of the calculation step in time, τ
= 0.1). The stable regime is presented in Fig. 4a (γ = 1.13). It is seen that after the passage of the first pulse
(see [2]) the perturbed field of the flow undergoes a rapid relaxation, and the stationary pattern of flow past
the body is recovered. We note that one and the same pattern of flow is recovered irrespective of the vari-
ation of the parameters that discretize the continuous differential problem, i.e., the number and configuration
of the nodes of the computational grid and also of the starting conditions of the algorithm, and the numerical
solution reaches the same branch; there are no bifurcations of the solution for all γ > γ1. The rate of approach
to the solution is almost the same over the entire computational domain.

The unstable regime is shown in Fig. 4b (γ = 1.03). Typical of this regime is the quasiperiodic, on
the whole, evolution of perturbations. Curves 1, representing the function ρ(t) at the stagnation point, make it
possible to determine, with a sufficient degree of accuracy, the motion of the internal shock wave from the
bow compression shock to the body, reflection from it, motion in the opposite direction from the body to the
bow shock, etc. (for details, see [2]). Here, the peaks of density correspond to: the leading steep front corre-
sponds to the instant of incidence of the internal shock wave on the nose part of the body, and the trailing
front corresponds to the reflection of the shock wave from it. The reflected shock wave moves also down-
stream along the body surface and the bow shock, as is clearly seen from the evolution of curves 3 and 4,

Fig. 4. Evolution of the perturbations of density in time at control points
1−4 (Fig. 1). The values γ = 1.13 (a) 1.03 (b), 1.1 (c), and 1.055 (d).
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respectively. On a large time interval (the calculation was performed up to n D104), the perturbations do not
decay, and the stationary pattern of flow is not attained. With further decrease in γ, the perturbation incident
on the bow shock destabilizes the flow completely, and it undergoes substantial reorganization. The front of
the bow shock is destroyed completely or partially, and it is transformed into a compressing wave, similarly
to that noted in [6]. Computation in the regime "external boundary of the computational domain is the front
of the bow shock, the position and configuration of which is determined in the process of the solution of the
whole problem" ([3, 4]), i.e., on the assumption of an "infinitely thin bow compression shock," leads to the
failure of the algorithm, and the computation becomes impossible even when using mechanisms of the sup-
pression of schematic instabilities.

In the range γ1 < γ < γ3, two characteristic regimes can be distinguished. Figure 4c (γ = 1.1) shows
the neutrally stable regime. The perturbation passes downstream, and in the forward zone of the flow on the
line of stagnation the stationary solution is attained rather rapidly (n D 100 at the forward point of the bow
shock, curve 2; n D 700 at the stagnation point, curve 1). However, the analysis of the evolution of the
parameters at the downstream point of the bow shock front (curve 4) points to aperiodic passage along the
front of the bow shock of some "solitary waves," i.e., to oscillations of the shock surface (and correspond-
ingly all the gas-dynamical parameters behind it). This picture closely resembles the picture of the emission
of sound by a shock wave [7] at certain values of the parameters of the perturbation incident on its front.
From the viewpoint of the theory of differential equations, the solution illustrated by curve 4 is typical not of
the solution of the Navier−Stokes-type equations, but rather of the solutions to the equations of the type of
Korteweg−de Vries [8] in the form of solitary solutions or a train of solution waves and also of the Euler
gas-dynamical equations in the presence of force interactions of electric and gravitation types, which leads to
soliton-like solutions [9]. The simultaneous consideration of curves 2 and 4, which correspond to the evolu-
tion of the parameters at the front of the bow shock "from above" and "from below" downstream, allows one
to conclude the following: since at the "upper" point 2 (see Fig. 1) the solution is completely stationary and
at the "lower" point 4 soliton-like waves are well developed (their intensity attains D20% of the mean values
at this point), at the front of the bow shock a point must exist (or an extended region) of generation of
aperiodic perturbations. The analysis of the evolution of the parameters in the perturbed region of flow
showed that the perturbation source is located in the vicinity of the point of intersection of the sonic line in
the flow, on which the values of the local Mach number are equal to 1, with the bow shock front. The physi-
cal mechanism underlying the generation of a perturbation in this region is not clear enough as yet and re-
quires further study. We note that numerical experiments on the elucidation of the effect of schematic
parameters (grid, starting conditions, filters) confirmed a stable existence of this type of flow.

One more type of flow is a neutral regime with transition, as shown in Fig. 4d (γ = 1.055). This
regime very much resembles the previous one in the evolution of perturbations in the forward region of flow.
Perturbations rapidly decay and a stationary pattern develops: at the forward point of the bow shock toward
the time step n D 200 (curve 2) and at the stagnation point toward n D 1000. Thereafter, here the gas-dy-
namical parameters were preserved with a high, up to 10−4, degree of accuracy during the entire time of the
numerical experiment. In the downstream region of flow (curves 3 and 4), the evolution pattern changes sub-
stantially. The perturbations of the type of solitary solitons are replaced by perturbations of an oscillatory
type, which is closer to a periodic one. However, the main factor of this type of flow, which precisely deter-
mined the necessity of a separate description in the classification of regimes, is transition (n D 4500) from
one solution to another, from a certain state "1" to another state "2," for example, for control point 4 from
the value ρ/ρ∞ ≈ 8 to the value ρ/ρ∞ ≈ 6.5. It should be emphasized here that the transition became possible
after, generally speaking, a long time of existence of a "nearly" stationary pattern of flow with a deviation of
the solution from the mean one which does not exceed 10%. If the numerical experiment was stopped before
the instant of time n D 4500, the phenomenon of transition would not be noted. The variation of the compu-
tational parameters demonstrated the stable presence of the effect of transition: a change in τ led to a corre-
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sponding change in n∗ , so that the transition occurred at the same value of the physical time t∗  = n∗ τ. With
further continuation of the computation to the region of very large values of n, the picture remained the same
oscillatory-quasistationary one as on the last portions of curves 3 and 4 of Fig. 4c (oscillations not higher
than 10%). The reverse transition from state "2" to state "1" was never realized in numerical experiments; the
transition occurred only in one direction (ρ2 < ρ1). The physical mechanism that caused this transition is not
very clear and also requires further study. From the viewpoint of the theory of differential equations, this is
the manifestation of the bifurcation nonuniqueness of the solutions of the Navier−Stokes system, and the
value γ = 1.055 lies in the vicinity of the point of branching of solutions.

Some considerations are appropriate here. First, the closely coinciding numerical values for the "in-
tensity" of the solitons and the "intensity" of the transition (defined as  f2 − f1 /f1, where f1 and f2 are the
initial and final states), of the order of 0.2, allow the assumption that, as a matter of fact, the "neutral re-
gime" and "neutral regime with transition" are one and the same regime. The soliton-like behavior of the
former is an "attempt" of one physical mechanism to realize transition of the solution from the first state to
the second; however, the other mechanism returns the solution to the initial state. With decrease in γ from
1.07 to 1.055, the domination of the second mechanism is replaced by the domination of the first one with a
corresponding transition.

To analyze the process, it is possible to utilize the theory of conical flow of a gas. It admits the
existence of two types of solution (strong and weak) of the problem of supersonic flow impingement on a
sharp cone with the formation of an attached compression shock. Even though in the present work we study
supersonic flow past a blunt body with a detached bow shock, nevertheless the solutions of these two prob-
lems have much in common, especially outside the subsonic flow region, in the vicinity of the stagnation
line. One is well aware of the relationship between the Mach number of a nonperturbed flow, the angle of
flow deflection, and the angle of inclination of a compression shock that has two solutions, a strong and a
weak one, i.e., the existence of two very different regimes of flow is possible (from the standpoint of gas
dynamics). The strong solution is characterized by the turn of the supersonic free stream at a jump with its
retardation to a subsonic one, while the weak one is characterized by the turn of the flow and preservation of
the supersonic flow velocity behind the front of the shock. As is known, even though analysis from the stand-
point of thermodynamics and statistical physics excludes neither of these two states, nevertheless it prefers
the weak solution (with a smaller inclination angle of the shock and correspondingly with a smaller change
of the parameters at the shock that converts the supersonic flow to a supersonic one with a small region of
a subsonic flow). Precisely this solution is realized in the majority of physical and computational experiments.
Moreover, attempts to obtain a strong solution in numerical experiments (see review [10]) or to retain it by
having put it as an initial condition failed: either the algorithm pushed the data along the weak branch of the
solution or the strong solution passed immediately, for several "steps" of the algorithm, into a weak one.

One of the regimes obtained in the present work (Fig. 4d) may be interpreted, with some caution, as
transition from an analog of a "strong" solution to an analog of a "weak" one, with the "strong" solution
existing for a rather long interval of algorithmic solution, and this effect reveals itself only in a very narrow
interval of the governing parameters; in the present case, these are M∞ and γ in the relationship γ(M∞) that
determines the limit of stability (see [1]).

Discussion of the Problem. Generally speaking, the discussion was begun above, when the results
obtained were described and commented upon. However, it is pertinent to consider briefly a number of fun-
damental aspects of the nonuniqueness of numerical solutions as the reflection of the problem of the
nonuniqueness of the solutions of differential equations (numerous theoretical works concerned with bifurca-
tion of analytical solutions of nonlinear equations deal with the problem in a somewhat different way).

To illustrate, we consider a one-dimensional equation of transfer:
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∂f
∂t

 + a 
∂f

∂x
 = 0 , (1)

whose general solution falls within the class of functions of the type of a "running wave":

f = F (x − at) . (2)

To obtain numerical solution of (1), we can apply, for example, the algorithm

fi
 n+1 − fi

 n

τ
 + a 

fi+1
 n  − fi

 n

δx
 = 0 . (3)

The specific, in the present case explicit, algorithm (3) is given for the sake of definiteness of further reason-
ings, with the problems of stability, degree of approximation, etc. being of no importance; they are not con-
sidered and are not discussed here, while the unvoidable brevity of presentation leads to a certain
mathematical incorrectness in the description of the transition from continuity to discreteness and back.

Analysis of the nonuniqueness and of the possibility of the appearance of singularities in numerical
solution (3) will be carried out on the basis of the principles of the theory of differential approximations.
Using the Taylor series expension, we have

f n+1 = f n +  ∑ 

k=1

∞

 
τk

k !
 




∂kf

∂tk




n

 ,   fi+1 = fi +  ∑ 

l=1

∞

 
δxl

l !
 




∂lf

∂xl



 i

 . (4)

Substituting (4) into (3) and taking off the coordinate subscripts of space and time (i, n), we obtain a full
differential approximation of scheme (3):

  ∑ 
k=1

∞

 
τk−1

k !
 




∂kf

∂tk



 + a  ∑ 

l=1

∞

 
δxl−1

l !
 




∂lf

∂xl




 = 0 . (5)

From (5) we obtain the first differential approximation (k = 1, l = 1)

∂f

∂t
 + a 

∂f

∂x
 = Q1 (τ) + Q2 (δx) . (6)

On discarding the terms O1 and O2 for τ → 0 and δx → 0, Eq. (6) goes over into Eq. (1). Of course, these
are the rudiments of the computational mathematics, which, however, are required for a further discussion of
the problem.

The second differential approximations (3) can be written in three forms: (k = 1, l = 2), k = 2, l =
1), and (k = 2, l = 2), respectively:

∂f

∂t
 + a 

∂f

∂x
 + 

aδx

2
 
∂2f

∂x2 = 0 , (7)

∂f

∂t
 + 

τ
2

 
∂2f

∂t2
 + a 

∂f

∂x
 = 0 , (8)

∂f

∂t
 + 

τ
2

 
∂2f

∂t2
 + a 

∂f

∂x
 + 

aδx

2
 
∂2f

∂x2 = 0 . (9)
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Here, the terms O1(τ2) and O2(δx2) on the right-hand sides are replaced by zeros for clarity of the illustration.
The next differential approximations are written out similarly. The solutions of Eqs. (7)−(9) already differ
substantially from the solution of the initial equation (1), and it is not guaranteed at all that substantial con-
densing of the mesh (τ, δx) will ensure the striving of solutions (7)−(9) toward solution (1) in the form of a
"traveling wave" (2) in the entire range of the parameters that determine the class of the problems. (We note
that one of the tests of the numerical algorithms developed is the determination of the transport properties of
the scheme by solving the transfer equation, i.e., from the evolution of the profile prescribed at the initial
time instant for the signal the quality of the algorithm is determined; see, e.g., [11].) This is true only for
smooth solutions. But if a flow has singularities such as shock waves or tangential and contact discontinui-
ties, then "the order of approximation of any algorithm falls actually to the first one" [12] despite the for-
mally high order of its differential approximation.

In particular, differential approximations (8)−(9) have the type of the Duffing equation for t; its solu-
tion, even despite the smallness of the coefficient of ft ′′, is time-dependent; the frequency characteristics and
the phase pattern may substantially differ from similar properties of solutions to the equations of evolution
type (1) or (7) with the presence of only the first derivative in time ft

 ′. The deviations of the attractors of
discrete representations of Eqs. (8)−(9) from the attractors of Eq. (1) by some parameters in certain ranges of
their changes (in the present work these parameters are the efficient specific heat ratio γ and the Mach num-
ber M∞) may have a resonance character of substantially narrow-band form. It may well be that the transient
regime is the manifestation of a certain strange attractor as a certain set in the space of states that attract, in
addition to unstable, also stable trajectories but with very small (by γ and M∞) regions of attraction.

For more complex (than the transfer equations) systems of the type of Euler, Navier−Stokes, and
Barnett, there correspond more complex differential approximations. At different values of the small parame-
ters τ and δx, their numerical solutions can exhibit different properties: dissipative, dispersive, soliton-like,
etc., since they are determined not by the initial differential equations of the type of, for example,
Navier−Stokes equations, but the differential approximations of the algorithms that implement them of the
type of Clairaut Burgers, Korteweg-de Vries equations, etc., and these properties manifest themselves in
rather narrow ranges of schematic parameters, as a rule, when there is a sharp change in the character of the
problem.

Despite the great number of works, the problem of the nonuniqueness of the solutions to the systems
of nonlinear differential equations is not at all clear, especially as regards the analysis of the solutions of
applied problems. This, to the same extent (if not to a greater one), relates to the nonuniqueness of the solu-
tions of discrete problems that approximate a continuous one with one degree of accuracy or another. Here,
the following classes of nonuniqueness of solutions can be distinguished − those differing by:

1) discrete grids (number of nodes and their configuration);
2) starting conditions for stationary problems that are solved by the time-dependent technique;
3) by organization of computations.
These three classes relate to one numerical algorithm. Of course, there is also a class of nonunique-

ness for different algorithms, since for its own algorithm there naturally exists its own differential approxima-
tion. A brief characteristic of each of the classes follows.

The most widely known of these is the class of nonuniqueness with respect to discrete grids. Com-
mon in computational mathematics is the notion of "poor quality" of numerical solutions with insufficient
number of computational nodes or cells; their increase uniquely favors an increase in the quality of the solu-
tion. However, an increase in the power of the computational technique and the possibility of using grids
with up to 106 nodes also led to the reverse effect in some problems. Thus, for example (see review [13] and
the references therein), the experiment with flow past sharp wing profiles in some regimes reveals the forma-
tion of two vortices: a large, clearly seen one, and a small-scale one. Calculation on a grid with a small
number of nodes makes it possible to obtain the pattern of flow only with one large vortex. A substantial
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increase in the number of nodes helps reveal also the second vortex, but a further increase (by an order of
magnitude) in the number of nodes of the grid again leads to the pattern of flow with one vortex. This seems
to be caused by the domination of the properties of another differential approximation of an applied discrete
algorithm.

To the class of the nonuniqueness of numerical solutions of stationary problems by the time-depend-
ent technique obtainable in a number of gas-dynamical regimes one may relate the nonuniqueness, investi-
gated in [14], that exhibits itself in the loss of symmetry of the solution in calculation of physically
symmetric problems by completely symmetric numerical algorithms and that is revealed in using, for the
same problem, different initial data (starting conditions of the algorithm). This can show up in conducting a
series of calculations in the hysteresis of the solutions obtained (see, e.g., [3]). However, the hysteresis of
regimes is manifested not only in computational, but also in experimental investigations. Thus, in [15] a de-
tailed study was made of the hysteresis of the aerodynamic coefficients Cy and Mz by the angle of attack α
of two objects: a wing with the profile NASA 0018 and of a model of a plane with a wing with a large
aspect ratio. Measurements of the parameters with direct progress of the experiment (increase in α from value
to value in the range from −3o to +30o and in the reverse process (decrease of α in the same range of angles)
showed the formation of a hysteresis loop of the values of Cy(α) and Mz(α). A further division of the step of
the experiment over α demonstrated the presence of a stable region of hysteresis and the appearance of other
branches of hysteresis with locally unstable inner boundaries. Analysis of the phenomenon from the point of
view of the theory of catastrophes [16] showed that the power J of the bifurcation set is J = 2 for an ordinary
hysteresis and J = 4 and J = 6 for a hysteresis with one or two inner branches, respectively.

Another type of nonuniqueness, whose study has been initiated at the present time, the nonuniqueness
with respect to the process of organization of computations, is as follows. A stationary stably existing picture
of flow is exposed to the action of a special perturbing factor. This factor can be represented by a single-mo-
ment pulse, as in the present work, or can be extended in time; here, of great importance is the form, dura-
tion, and intensity of the perturbing pulse. Thus, in [7] an artificially induced transition from a regular to a
Mach type of reflection of the shock wave and vice versa, from the Mach type to a regular type is studied.
The gas-dynamic theory admits in a small range the existence of both regular and Mach type at the same
time set of governing parameters, similarly to a weak and strong solution of the problem of flow past a cone.
In [17], a localized but sufficiently extended in time and space perturbing pulse is incident on the stationary
picture of flow with a Mach or regular configuration (we note that in a linear approximation both of these
configurations are stable against small perturbations). At certain parameters of it, the stationary configuration
of one type can pass over into a stationary configuration of another type. It is found that the energy expen-
diture on transformation of the Mach pattern into a regular one is greater than that of transformation of the
regular pattern into the Mach one, i.e., the Mach configuration can be considered as a more stable one in the
region of the double solution, and the point of branching of the solutions has the property of "selective trans-
missivity." An alternative selection of an actually realized type of configuration can be implemented by re-
sorting to some analytical considerations. Thus, in [18], where problems of the incidence shock wave on the
interface between two gases with different physical properties is studied, actually problems of the branching
of solutions are considered, i.e., the possibility of the existence, at these or other values of the parameters, of
the Mach or regular types of shock-wave configurations.

What are the criteria for the selection of the different solutions obtained? As yet, it is difficult to
answer this question uniquely. In symmetrical problems it is possible to organize the control of the obtained
solution, since the violation of symmetry is quite evident. It is possible to carry out cycles of calculations for
determining or even, if necessary, "removing" nonsymmetric solutions. The calculations of essential space
problems, with the occurrence of a complex structure of flows and instability of shock waves of the type of
Richtmeyer−Meshkov (see, e.g., [19]) not adaptable to a simple analysis lead to fundamental difficulties of
selection in the case of nonuniqueness of the solution.
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Probably the importance of the problem of nonuniqueness of the solution of a physical problem, of
the differential problem that describes the latter, and of the discrete algorithm that implements it will increase
with the development of computational techniques and the appearance of systems of parallel calculation that
make it possible to attain a much higher level of numerical simulation.

This work was carried out with financial support from the Russian Foundation for Fundamental Re-
search (projects 99-01-00514 and 00-07-90297).

NOTATION

E, energy; ρ, density; U, velocity; M, Mach number; Re, Reynolds number; Pr, Prandtl number; γ,
specific heat ratio; R, radius of body bluntness; d, distance of the detachment of a shock from the body at the
stagnation line; x, coordinate; δx, step of calculation over the coordinate x; T, periodicity; t, time; n, number
of the step of calculation in time; τ, step of calculation in time; I, intensity; ω, frequency; k, wave number;
L, wave length; J, power of bifurcation set; α, angle of attack, Cy, coefficient of buoyancy; Mz, pitching
moment. Subscripts: ∞, values in a nonperturbed flow; *, critical or characteristic value; s, values at the front
shock; b, values on the surface; n, time index; i, coordinate index of the grid node; min, minimum value;
max, maximum value.
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